10 research outputs found

    Uniqueness of the Fock quantization of the Gowdy T3T^3 model

    Get PDF
    After its reduction by a gauge-fixing procedure, the family of linearly polarized Gowdy T3T^3 cosmologies admit a scalar field description whose evolution is governed by a Klein-Gordon type equation in a flat background in 1+1 dimensions with the spatial topology of S1S^1, though in the presence of a time-dependent potential. The model is still subject to a homogeneous constraint, which generates S1S^1-translations. Recently, a Fock quantization of this scalar field was introduced and shown to be unique under the requirements of unitarity of the dynamics and invariance under the gauge group of S1S^1-translations. In this work, we extend and complete this uniqueness result by considering other possible scalar field descriptions, resulting from reasonable field reparameterizations of the induced metric of the reduced model. In the reduced phase space, these alternate descriptions can be obtained by means of a time-dependent scaling of the field, the inverse scaling of its canonical momentum, and the possible addition of a time-dependent, linear contribution of the field to this momentum. Demanding again unitarity of the field dynamics and invariance under the gauge group, we prove that the alternate canonical pairs of fieldlike variables admit a Fock representation if and only if the scaling of the field is constant in time. In this case, there exists essentially a unique Fock representation, provided by the quantization constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis shows that the scalar field description proposed by Pierri does not admit a Fock quantization with the above unitarity and invariance properties.Comment: 14 page

    Quantum unitary dynamics in cosmological spacetimes

    Full text link
    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.Comment: 18 page

    Quantum Gowdy T3T^3 model: A uniqueness result

    Get PDF
    Modulo a homogeneous degree of freedom and a global constraint, the linearly polarised Gowdy T3T^3 cosmologies are equivalent to a free scalar field propagating in a fixed nonstationary background. Recently, a new field parameterisation was proposed for the metric of the Gowdy spacetimes such that the associated scalar field evolves in a flat background in 1+1 dimensions with the spatial topology of S1S^1, although subject to a time dependent potential. Introducing a suitable Fock quantisation for this scalar field, a quantum theory was constructed for the Gowdy model in which the dynamics is implemented as a unitary transformation. A question that was left open is whether one might adopt a different, nonequivalent Fock representation by selecting a distinct complex structure. The present work proves that the chosen Fock quantisation is in fact unique (up to unitary equivalence) if one demands unitary implementation of the dynamics and invariance under the group of constant S1S^1 translations. These translations are precisely those generated by the global constraint that remains on the Gowdy model. It is also shown that the proof of uniqueness in the choice of complex structure can be applied to more general field dynamics than that corresponding to the Gowdy cosmologies.Comment: 28 pages, minor changes, version accepted for publication in Classical and Quantum Gravit

    Massless scalar field in de Sitter spacetime: unitary quantum time evolution

    Get PDF
    We prove that, under the standard conformal scaling, a massless field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. This result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch-Davies vacuum.Comment: 23 pages. Typos corrected, matches published versio

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Metodos matematicos em quantizacao canonica de espacos de fase nao triviais

    No full text
    This thesis is devoted to several aspects of the problem of canonical quantization of non-trivial phase spaces, both in finite and infinite dimensions. We will consider quantum representations of the type of the coordinate Schrodinger representation. In part I we discuss general aspects of the problem of quantization of non-linear finite dimensional phase spaces. Besides reviewing concepts that will be generalized in parts II and III, we discuss and criticize a particular quantization of the torus proposed by Gotay. We argue that algebraic relations among classical observables should be taken into account at the quantum level. Part II is devoted to measure theoretical methods in the canonical quantization of scalar field theories. We review the theory of cyclic representations of the Weyl relations and the quantization of the free scalar field with non-zero mass. We study the support of the free field measures, using a sequence of variables which test the field behaviour at large distances, thus allowing to distinguish between the typical quantum fields associated with different values of the mass. Part III is devoted to mathematical methods in the canonical quantization of gauge theories of connections. The use of projective methods together with the formalism of groupoids allows a systematization of the construction of the space of quantum connections introduced by Baez, clarifying the relation between this space and the quantum configuration space introduced by Ashtekar and Isham. We also study properties of the Ashtekar-Lewandowski measure in. We show that this measure is ergodic with respect to the action of the group of diffeomorphisms. We also prove that a typical quantum connection restricted to an analytic curve leads to a parallel transport discontinuous at every point of the curveAvailable from Fundacao para a Ciencia e a Tecnologia, Servico de Informacao e Documentacao, Av. D. Carlos I, 126, 1249-074 Lisboa, Portugal / FCT - Fundação para o Ciência e a TecnologiaSIGLEPTPortuga

    Convertible Subspaces of Hessenberg-Type Matrices

    No full text
    We describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. An explicit characterization of convertible Hessenberg-type matrices is presented. We conclude that convertible matrices with the maximum number of nonzero entries can be reduced to a basic set.info:eu-repo/semantics/publishedVersio
    corecore